Lesson 21

If z = f(x, y), then we have differentials ∂z , ∂x , and ∂y , which are related by the following formula: $\partial z = f_x(x, y)\partial x + f_y(x, y)\partial y$ (this is called the *total differential*).

We can approximate Δz by $\Delta z \approx f_x(x,y)\Delta x + f_y(x,y)\Delta y$.

1. Find ∂z for $z = e^{x^2 + y^2} \tan(2x)$. $\frac{\partial z}{\partial x} = 2x e^{-\frac{x^2 + y^2}{2}} \tan(2x) + e^{-\frac{x^2 + y^2}{2}} \left(2\sec^{\frac{x^2 + y^2}{2}} \tan(2x) + e^{-\frac{x^2 + y^2}{2}} \left(2\sec^{\frac{x^2 + y^2}{2}} \tan(2x) + e^{-\frac{x^2 + y^2}{2}} \tan(2x) + e^{-\frac{x^2 + y^2}{2}} \tan(2x) \right) = 2x e^{-\frac{x^2 + y^2}{2}} \tan(2x) + 2y e^{-\frac{x^2 + y^2}{2}} \tan(2x) = 2y$

2. Use the total differential to approximate the quantity $\sqrt[3]{2.6^2 - 1.07^2} - \sqrt[3]{2.5^2 - 1^2}$ to 3 decimal places.

(a) Fill in the table:

Fill in the table:		
f(x,y)	$3\sqrt{x^2-y^2} = (x^2-y^3)/3$	
f_x	$\frac{1}{3}(x^2-y^2)^{-2/3}(2x)$	
f_y	$\frac{1}{3}(x^2-y^2)^{-2/3}(-2y)$	
x	2.5	
y		
Δx	(2.6-2.5)	
Δy	.07 (1.07-1)	

(b) Approximate the quantity $\sqrt[3]{2.6^2 - 1.07^2} - \sqrt[3]{2.5^2 - 1^2}$.

$$\Delta z \approx f_{x} \Delta x + f_{y} \Delta y$$

$$= \frac{1}{3} (2.5^{2} - 1^{2})^{-2/3} (2)(2.5) (.1) + \frac{1}{3} (2.5^{2} - 1^{2})^{-2/3} (-2) (1) (.07)$$

$$\approx .0397$$

$$\rightarrow [.040]$$

actual: .0393

- 3. A company's profit is given by $P(K, L) = 500K^{1/3}L^{2/3}$, where K is the company's overhead costs in thousands and L is the number of workers in hundreds.
- Find the change in profit when the overhead costs are currently 3 million dollars and there are 2,500 workers and overhead costs are decreased by 5 thousand dollars while the number of workers is increased by 150.

(a) Fill in the table:

Fill in the table:			
P(K,L)	500 K 13 L 2/3	enale dise	uli ekolganik (d
$P_K = \frac{\partial P}{\partial K}$	500 (1 K - 2/3) L 2/3	1129	(3.7)2.
$P_L = \frac{\partial P}{\partial L}$	500K 1/3 (= L-1/3)) 100 ja	
K	3,000,000 = 3,000 thousa	nds	
L	2,500 = 25 hundred	őcs!	
ΔK	- 5 thousand	Z.,	1 1
ΔL	1.5 hundred	Ş	9.6

(b) Approximate ΔP .

$$\Delta P \approx P_{K} \Delta K + P_{L} \Delta L$$

$$= 500 \left(\frac{1}{3}(3000)^{-2/3}\right) (25)^{2/3} (-5)$$

$$+ 500 (3000)^{1/3} \left(\frac{2}{3}(25)^{-2/3}\right) (1.5)$$

$$= {}^{6}2431.96$$

- 4. Recall that $A = Pe^{rt}$. Suppose you deposit \$1,000 today into a 5 year CD and interest is compounded continuously at an annual rate of 2%.
 - (a) How much money will be in the CD after 5 years?

$$A = 1000 e^{.02(5)} \approx $1,105.17$$

(b) Suppose the rate changes to 1.95%. Fill in the following table:

)	Suppose the rate changes to 1.95%. Fin in the following table.		
	A(P,r)	Per(5) = Pesr	
	$A_P = \frac{\partial A}{\partial P}$	e 5r	
	$A_r = \frac{\partial A}{\partial r}$	5Pesr	A
	P	1000	3
	r	.02	A&
	ΔP	?	14
	Δr	0005 (.019502)	mizotoph (d.

(c) Approximately how much more will you need to deposit today to obtain the same amount in 5 years?

$$\Delta A \approx A_{P} \Delta P + A_{r} \Delta r$$

$$O = e^{5(.02)} \Delta P + 5(1000)e^{5(.02)}(-.0005)$$

$$\Delta P = ^{$5} 2.50$$

5. A tank is a cylinder h feet tall with radius r feet. Recall the surface area of a cylinder with no top is $A(r,h) = \pi r^2 + 2\pi rh$. A particular tank is measured to be 6 feet tall with a radius of 3 feet. The height is measured with an error of at most 3 inches (1/4 of a foot) and the radius is measured with a maximum error of 1 inch (1/12 of a foot).

(a) Fill in the following table:

Fill in the following table.		
A(h,r)	$\pi r^2 + 2\pi rh$	
$A_h = \frac{\partial A}{\partial h}$	ZTTr	
$A_r = \frac{\partial A}{\partial r}$	2TTY + 2TTh	
h		
r	3	
Δh	± 1/4	
Δr	$\pm \frac{1}{12}$	

(b) What is the maximum error in the calculation of the surface area?